3.3.45 \(\int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{5/2}} \, dx\) [245]

Optimal. Leaf size=94 \[ \frac {2 c \sqrt {c \sec (a+b x)}}{b d (d \csc (a+b x))^{3/2}}-\frac {3 c^2 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{b d^2 \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}} \]

[Out]

2*c*(c*sec(b*x+a))^(1/2)/b/d/(d*csc(b*x+a))^(3/2)+3*c^2*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*Elliptic
E(cos(a+1/4*Pi+b*x),2^(1/2))/b/d^2/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2)/sin(2*b*x+2*a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2704, 2710, 2652, 2719} \begin {gather*} \frac {2 c \sqrt {c \sec (a+b x)}}{b d (d \csc (a+b x))^{3/2}}-\frac {3 c^2 E\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{b d^2 \sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*Sec[a + b*x])^(3/2)/(d*Csc[a + b*x])^(5/2),x]

[Out]

(2*c*Sqrt[c*Sec[a + b*x]])/(b*d*(d*Csc[a + b*x])^(3/2)) - (3*c^2*EllipticE[a - Pi/4 + b*x, 2])/(b*d^2*Sqrt[d*C
sc[a + b*x]]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b*x]])

Rule 2652

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a*Sin[e +
f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]), Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2704

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Csc[e +
f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/(f*a*(n - 1))), x] + Dist[b^2*((m + 1)/(a^2*(n - 1))), Int[(a*Csc[e +
f*x])^(m + 2)*(b*Sec[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && LtQ[m, -1] && Integer
sQ[2*m, 2*n]

Rule 2710

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n, Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n),
 x], x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin {align*} \int \frac {(c \sec (a+b x))^{3/2}}{(d \csc (a+b x))^{5/2}} \, dx &=\frac {2 c \sqrt {c \sec (a+b x)}}{b d (d \csc (a+b x))^{3/2}}-\frac {\left (3 c^2\right ) \int \frac {1}{\sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}} \, dx}{d^2}\\ &=\frac {2 c \sqrt {c \sec (a+b x)}}{b d (d \csc (a+b x))^{3/2}}-\frac {\left (3 c^2\right ) \int \sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)} \, dx}{d^2 \sqrt {c \cos (a+b x)} \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)}}\\ &=\frac {2 c \sqrt {c \sec (a+b x)}}{b d (d \csc (a+b x))^{3/2}}-\frac {\left (3 c^2\right ) \int \sqrt {\sin (2 a+2 b x)} \, dx}{d^2 \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}\\ &=\frac {2 c \sqrt {c \sec (a+b x)}}{b d (d \csc (a+b x))^{3/2}}-\frac {3 c^2 E\left (\left .a-\frac {\pi }{4}+b x\right |2\right )}{b d^2 \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.47, size = 69, normalized size = 0.73 \begin {gather*} -\frac {c \left (-2+3 \sqrt [4]{-\cot ^2(a+b x)} \, _2F_1\left (-\frac {1}{2},\frac {1}{4};\frac {1}{2};\csc ^2(a+b x)\right )\right ) \sqrt {c \sec (a+b x)}}{b d (d \csc (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*Sec[a + b*x])^(3/2)/(d*Csc[a + b*x])^(5/2),x]

[Out]

-((c*(-2 + 3*(-Cot[a + b*x]^2)^(1/4)*Hypergeometric2F1[-1/2, 1/4, 1/2, Csc[a + b*x]^2])*Sqrt[c*Sec[a + b*x]])/
(b*d*(d*Csc[a + b*x])^(3/2)))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(511\) vs. \(2(109)=218\).
time = 57.90, size = 512, normalized size = 5.45

method result size
default \(\frac {\left (6 \cos \left (b x +a \right ) \sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )-3 \cos \left (b x +a \right ) \sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )+6 \sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {\frac {1-\cos \left (b x +a \right )+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )+\left (\cos ^{2}\left (b x +a \right )\right ) \sqrt {2}-3 \sqrt {2}\, \cos \left (b x +a \right )+2 \sqrt {2}\right ) \cos \left (b x +a \right ) \left (\frac {c}{\cos \left (b x +a \right )}\right )^{\frac {3}{2}} \sqrt {2}}{2 b \sin \left (b x +a \right )^{3} \left (\frac {d}{\sin \left (b x +a \right )}\right )^{\frac {5}{2}}}\) \(512\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/2/b*(6*cos(b*x+a)*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*
((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticE(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))-3*cos(b
*x+a)*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a
))/sin(b*x+a))^(1/2)*EllipticF(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))+6*((1-cos(b*x+a)+sin(
b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*Elli
pticE(((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))-3*((1-cos(b*x+a)+sin(b*x+a))/sin(b*x+a))^(1/2)
*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticF(((1-cos(b*x+a)+sin(
b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))+cos(b*x+a)^2*2^(1/2)-3*2^(1/2)*cos(b*x+a)+2*2^(1/2))*cos(b*x+a)*(c/cos(
b*x+a))^(3/2)/sin(b*x+a)^3/(d/sin(b*x+a))^(5/2)*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(5/2),x, algorithm="maxima")

[Out]

integrate((c*sec(b*x + a))^(3/2)/(d*csc(b*x + a))^(5/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))*c*sec(b*x + a)/(d^3*csc(b*x + a)^3), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*sec(b*x+a))**(3/2)/(d*csc(b*x+a))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6437 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*sec(b*x+a))^(3/2)/(d*csc(b*x+a))^(5/2),x, algorithm="giac")

[Out]

integrate((c*sec(b*x + a))^(3/2)/(d*csc(b*x + a))^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {c}{\cos \left (a+b\,x\right )}\right )}^{3/2}}{{\left (\frac {d}{\sin \left (a+b\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c/cos(a + b*x))^(3/2)/(d/sin(a + b*x))^(5/2),x)

[Out]

int((c/cos(a + b*x))^(3/2)/(d/sin(a + b*x))^(5/2), x)

________________________________________________________________________________________